Contacting Your Instructor
Instructors typically respond to emails from students within 24 hours. However, over the weekend and holiday periods responses may be delayed. Find out more about contacting your instructor.

Instructor Contact Information
Name: Tana Langley
Email: tlangley@dcccd.edu
Office Phone: 972-860-4948
Office Location: X3026
Virtual Office Hours: Thursdays 6:30 pm – 7:30 pm, other times available upon request
Virtual Office Hour Link: https://meetingsamer19.webex.com/meet/pr623116264
Division Office and Phone: K224, 972-860-4750, Virtual Division Office

Course Information
Course Title: General Chemistry I
Course Number: CHEM 1411
Section Number: 21502
Semester/Year: Fall 2020
Credit Hours: 4
Class Meeting Time/Location: Lecture: Online; Lab: Tuesdays 6:30 pm – 9:20 pm, X3033
Certification Date: 9/05/20
Last Day to Withdraw: 11/12/20

Course Prerequisites
MATH 1314 or equivalent academic preparation.
Course Description
Fundamental principles of chemistry for majors in the sciences, health sciences, and engineering; topics include measurements, fundamental properties of matter, states of matter, chemical reactions, chemical stoichiometry, periodicity of elemental properties, atomic structure, chemical bonding, molecular structure, solutions, properties of gases, and an introduction to thermodynamics and descriptive chemistry. Basic laboratory experiments will reinforce theoretical principles of general chemistry, introduction of the scientific method, experimental design, data collection and analysis, and preparation of laboratory reports. High school chemistry, CHEM 1405 or the equivalent are strongly recommended. (3 Lec., 3 Lab.)

Coordinating Board Academic Approval Number 4005015403

Required Course Materials
If your Dallas College course requires learning materials they will be provided as part of the IncludED program (dccd.edu/included) or as free materials you can access in your online course shell.

If you opt out of the IncludED program, you are responsible for obtaining all your required learning materials by the first day of the class. For more details, see Institutional Policies.

Required Materials (provided as part of IncludED program):
 (The ebook is located in our course shell in eCampus under Learning Materials.)

Additional Required Materials (not part of IncludED):
The following supplies are also required, but are not part of the IncludED program:
1. General Chemistry I Laboratory Manual: Download experiments from the 1411 Community site on eCampus
2. Student Lab Notebook, Hayden-McNeil
3. Scientific Calculator: Non-programmable, Non-graphing. Programmable calculators containing alpha keys & graphing calculators will not be allowed on tests. Cell phone calculators will not be allowed on tests.
4. All-enclosed safety goggles

Overall Course Grade:
Lecture grade = 80% of overall course grade
Lab grade = 20% of overall course grade
Lecture Grade

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Possible Points</th>
<th>% of Lecture Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Three Mid-Term Exams</td>
<td>100 points each</td>
<td>20% each</td>
</tr>
<tr>
<td>Chapter Homework (Avg.)</td>
<td>100 points</td>
<td>20%</td>
</tr>
<tr>
<td>Cumulative Final Exam</td>
<td>100 points</td>
<td>20%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Lab Grade

<table>
<thead>
<tr>
<th>Assignments</th>
<th>Possible Points</th>
<th>% of Lab Grade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Full Lab Reports for Experiments Performed In-Person (Avg.)</td>
<td>100 points each</td>
<td>60%</td>
</tr>
<tr>
<td>“Dry Labs” Done at Home (Avg.)</td>
<td>100 points each</td>
<td>40%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>100%</td>
</tr>
</tbody>
</table>

Scale:
- A: 89.5-100%
- B: 79.5-89.4%
- C: 69.5-79.4%
- D: 59.5-69.4%
- F: <59.5%

Course Materials: On our course page, there is a content area labeled Course Materials for Each Section. This contains folders for each unit/each exam. Videos, Powerpoints, Handouts, and Homework that will be covered on Exam #1 is under the folder Material Covered on Exam 1. Materials for Exam 2 and Exam 3 each have a folder as well.

Online Tests and Final Exam: Tests will be given via eCampus, and will be located in the Test folders, in the Course Content area. Tests will be multiple choice. You may use scratch paper to work out calculations etc, and refer to your notes, but you may not refer to the internet during the test.

Labs: Labs are an important part of the chemistry experience; they help you connect theory discussed in lecture with real-world observations. Participation in laboratory activities is mandatory. The lab portion of the course is accessed through an eCampus Community called BHC-CHEM-1411-LAB. You can access the lab community by clicking on the Community tab located at the top of the eCampus screen. Once in the Lab Community, click on the FA2020 Labs menu button.
Some laboratory activities will take place in the chemistry laboratory. These experiments require significant pre-lab preparation as described below, and they will also require a full lab report as part of the assignment. Complete instructions for writing a lab report can be found in your course shell as well as in the laboratory community.

Other laboratory activities are “dry labs:” worksheets that allow you to practice manipulating ideas or data connected to laboratory work. These may be downloaded from the laboratory community, and they will be submitted digitally through the community.

Chemistry Laboratory Policies and Information

Pre-lab Activity
Brookhaven chemistry experiments require a pre-lab activity. The purpose of the pre-lab is to ensure that you understand the experiment and all related safety procedures.

All of your written materials for your experiments- pre-lab materials, material from the lab itself, and post-lab materials should be hand-written in your laboratory notebook. Graphs are the exception to this- some experiments will include computer generated graphs that should be printed out and included with your final report.

Be sure you know how to do all the calculations required in the experiment prior to coming to lab. If you can’t do the calculations, then seek help before lab.

If you have not completed the pre-lab correctly, and in full, you will not be permitted to attend lab.

The Experiment
There will be a short safety and technique discussion and demonstration at the beginning of each lab period. If you come to lab late, you will not be admitted to the lab class. Observations, data collection, and some results will be completed in lab.

You are expected to wear appropriate clothing and protective eyewear (fully-enclosed goggles) at all times. No flip-flops or open-toed shoes are permitted in the chemistry laboratory.

Post Lab
After completion of the lab, you will write your lab report. You may discuss your results with other students but your report is an individual effort. Be careful not to plagiarize. Lab reports are due one week after the completion of the experiment. Late reports will not be accepted. The quality of calculations and reasoning will have as much impact on your grade as your experimental results.
Lab Grade Policy

IMPORTANT: Since you will receive a single transcripted grade for both lecture and lab, you must earn an overall grade of 70% for the lab portion of this course, in order to pass the class. Failure to complete and submit any lab, will result in a grade of zero for that lab, and could jeopardize your chances of passing the lecture portion of the class.

eCampus Information

This class uses eCampus (http://ecampus.dcccd.edu/). Login to eCampus using your DCCCD account e.g.: e9876543@student.dcccd.edu. If you have trouble logging in, please contact Technical Support on the web or by phone at 1-866-374-7169 or 972-669-6402.

Once you have logged in to eCampus, please make sure that your email address is correct in the system. If I cannot contact you via email, you will miss important information. To check that your email is correct, click on the “My DCCCD” tab at the top of the eCampus screen, then click on “Personal Information” under “Tools” at the left-hand-side of the screen then “Edit Personal Information”.

Once you have logged in and verified your email address, access the CHEM 1411 course by clicking on the “Courses” tab at the top of the screen and then selecting 2020FA-CHEM-141121502. Spend some time familiarizing yourself with eCampus by clicking on the buttons to the left of the course screen. Lecture material and tests can be found under the "Course Content" button.

Institutional Policies

Institutional Policies include information about tutoring, Disabilities Services, class drop and repeat options, Title IX, and more.

Student Learning Outcomes

Upon successful completion of this general chemistry course for science majors, students will:

1. Convert units of measure and demonstrate dimensional analysis skills.
2. Define the fundamental properties of matter. Classify matter, compounds, and chemical reactions.
3. Determine the basic nuclear and electronic structure of atoms.
4. Identify trends in chemical and physical properties of the elements using the Periodic Table.
5. Describe the bonding in and the shape of simple molecules and ions.
7. Write chemical formulas.
8. Write and balance equations.
9. Use the rules of nomenclature to name chemical compounds.
10. Define the types and characteristics of chemical reactions.
11. Use the gas laws and basics of the Kinetic Molecular Theory to solve gas problems.
12. Determine the role of energy in physical changes and chemical reactions.

Upon successful completion of this laboratory portion of this course, students will:
1. Demonstrate safe and proper handling of laboratory equipment and chemicals.
2. Use basic apparatus and apply experimental methodologies used in the chemistry laboratory.
3. Conduct basic laboratory experiments with proper laboratory techniques.
4. Make careful and accurate experimental observations.
5. Relate physical observations and measurements to theoretical principles.
6. Interpret laboratory results and experimental data, and reach logical conclusions.
7. Record experimental work completely and accurately in laboratory notebooks and communicate experimental results clearly in written reports.
8. Design fundamental experiments involving principles of chemistry.
9. Identify appropriate sources of information for conducting laboratory experiments involving principles of chemistry.

Texas Core Objectives

The College defines essential knowledge and skills that students need to develop during their college experience. These general education competencies parallel the Texas Core Objectives for Student Learning. In this course, the activities you engage in will give you the opportunity to practice two or more of the following core competencies:

Critical Thinking Skills - to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information

Communication Skills - to include effective development, interpretation, and expression of ideas through written, oral, and visual communication

Empirical and Quantitative Skills - to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions

Teamwork - to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal

Personal Responsibility - to include the ability to connect choices, actions, and consequences to ethical decision-making

Social Responsibility - to include intercultural competence, knowledge of civic responsibility, and the ability to engage effectively in regional, national, and global communities
<table>
<thead>
<tr>
<th>Topic</th>
<th>Textbook Correlation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Experimentation and Measurement</td>
<td>Chapter 1</td>
</tr>
<tr>
<td>Atoms, Molecules, and Ions</td>
<td>Chapter 2</td>
</tr>
<tr>
<td>Periodicity and the Electronic Structure of Atoms</td>
<td>Chapter 5</td>
</tr>
<tr>
<td>Ionic Compounds: Periodic Trends and Bonding Theory</td>
<td>Chapter 6 (sections 6.1-6.7)</td>
</tr>
<tr>
<td>Mass Relationships in Chemical Reactions</td>
<td>Chapter 3 (only section 3.3)</td>
</tr>
<tr>
<td>Exam 1 (week of Sept. 21st)</td>
<td></td>
</tr>
<tr>
<td>Reactions in Aqueous Solution</td>
<td>Chapter 4</td>
</tr>
<tr>
<td>Mass Relationships in Chemical Reactions</td>
<td>Chapter 3</td>
</tr>
<tr>
<td>Thermochemistry: Chemical Energy</td>
<td>Chapter 9</td>
</tr>
<tr>
<td>Exam 2 (week of Oct. 26th)</td>
<td></td>
</tr>
<tr>
<td>Covalent Bonding and Electron-Dot Structures</td>
<td>Chapter 7</td>
</tr>
<tr>
<td>Covalent Compounds: Bonding Theories and Molecular Structure</td>
<td>Chapter 8</td>
</tr>
<tr>
<td>Gases: Their Properties and Behavior</td>
<td>Chapter 10</td>
</tr>
<tr>
<td>Exam 3 (week of Nov. 23rd)</td>
<td></td>
</tr>
<tr>
<td>Review for Final</td>
<td>Chapters 1-10</td>
</tr>
<tr>
<td>Final Exam (Week of Dec. 7th)</td>
<td></td>
</tr>
</tbody>
</table>

The guidelines and class schedule in this syllabus may be changed, deleted, or amended at any time. Please watch for announcements and/or emails.