Course Syllabus for University Physics I PHYS 2425 – Sec 25001
Summer I 2019

Instructor: Jeff Peden
Email: jpeden@dcccd.edu
Office: 972-860-4653
Division office: 972-860-4750
Office location: K-220
Office Hours: T,F 2:00 – 3:00 pm.

Chaz Hafey: 972-860-4766
Lecture: M-F 9:40-11:40 a.m. K-254
Lab: M-F 11:50-1:50 p.m. K-251

Catalog Description
This is a Texas Common Course Number. This is a Core Curriculum course selected by the colleges of DCCCD.
Prerequisite: MATH 2413. DREA 0093 or English as a Second Language (ESOL) 0044 or have met the Texas Success Initiative (TSI) standard in Reading.

Course Description: The first semester of calculus - based physics sequence for science, computer science, and engineering majors. The principles and applications of classical mechanics, including harmonic motion, physical systems and thermodynamics are studied with emphasis on problem solving. Performance of basic laboratory experiments supporting theoretical physics principles and applications of classical mechanics, including harmonic motion, physical systems and thermodynamics. Also includes experimental design, data collection and analysis, and preparation of laboratory reports. (3 Lec., 3 Lab.)

Coordinating Board Academic Approval Number 4001015403

Student Learning Outcomes
1. State the principles and laws of physics as they apply to mechanics, harmonic motion and thermodynamics.
2. Identify and use relevant equations applicable to mechanics, harmonic motion and thermodynamics.
3. Apply the concepts learned to solve theoretical problems and explain phenomena in the laboratory and in the outside world.
4. Perform laboratory experiments that illustrate important concepts and analyze the data gathered using scientific principles.
5. Develop skills for analytical thinking that are useful for problem solving in physics and other fields.
6. Participate in enrichment activities that lead to an appreciation of how physics has developed, how physics affects other fields and the relevance of learning physics.

Learning Outcomes from THECB
1. Determine the components of linear motion (displacement, velocity, and acceleration) and especially motion under conditions of constant acceleration.
2. Solve problems involving forces and work.
3. Apply Newton’s laws to physical problems.
4. Identify the different types of energy.
5. Solve problems using principles of conservation of energy.
6. Define the principles of impulse, momentum and collisions.
7. Use the principles of impulse and momentum to solve problems.
8. Determine the location of the center of mass and center of rotation for rigid bodies in motion.
9. Discuss rotational kinematics and dynamics, and the relationship between linear and rotational
10. Solve problems involving rotational and linear motion.
11. Define equilibrium, including the different types of equilibrium.
12. Discuss simple harmonic motion and its application to real-world problems.
13. Solve problems involving the First and Second Laws of Thermodynamics.
14. Prepare laboratory reports that clearly communicate experimental information in a logical and scientific manner.
15. Conduct basic laboratory experiments involving classical mechanics.
16. Relate physical observations and measurements involving classical mechanics to theoretical principles.
17. Evaluate the accuracy of physical measurements and the potential source of error in the measurements.
18. Design fundamental experiments involving principles of classical mechanics.
19. Identify appropriate sources of information for conducting laboratory experiments involving classical mechanics.

Core 2014 Objectives
PHYS 2425 is part of the Life and Physical Sciences Component Area 030.
(i) Courses in this category focus on describing, explaining, and predicting natural phenomena using the scientific method.
(ii) Courses involve the understanding of interactions among natural phenomena and the implications of scientific principles on the physical world and on human experiences.
(iii) The following four Core Objectives are addressed in this course to fulfill this requirement:
 • Critical Thinking Skills: to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
 • Communication Skills: to include effective development, interpretation and expression of ideas through written and visual communication.
 • Empirical and Quantitative Skills: to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.
 • Teamwork: to include the ability to consider different points of view and to work effectively with others to support a shared purpose or goal.

Textbook
For Labs: Sidhwa, Anahita F. Physics 1401/2425 Lab Experiments.

Course Outline
The course is divided into four units. The schedule containing the objectives, dates on which they will be covered, related reading, problems and assignments is distributed separately.

Evaluation
Tests: There will be four tests during the semester. Tests will consist of conceptual questions and problems. Students must follow the Brookhaven College code of student conduct at all times during the course, and dishonesty will not be tolerated.

Final Exam: The final exam will simply be exam 4. The format and weight will be the same as the other
The final exam for this class is: Wednesday July 3, 2019 from 9:40 - 11:40AM

Lab experiments & Reports: There will be several experiments throughout the semester. Making accurate measurements and recording and analyzing data will be required for each lab. The format to be followed is discussed in the lab manual and during lab. Lab reports will be due as scheduled and late reports will not be accepted without permission.

A student must make a passing grade in lab to receive a passing grade in the course.

Assignments: Homework assignments will be assigned throughout the semester. These assignments are reading and/or video assignments that I expect you to complete in order to fully participate in class. Online quizzes will sometimes be assigned to make sure you are watching the videos and/or reading the material. Please come to class fully prepared on the material covered in the HW assignment.

Problem sets will also be given as in-class assignments. These problems cannot be made up. These problems are designed to fine tune your understanding and help you prepare for the exam. Problem sets may be in the form of a mini-lab, worksheet or other activity. Sometimes you will be working alone, but frequently you will be working in groups. Points earned for problem sets and online quizzes comprise a significant portion of your overall grade.

Your grade in this class will contain these components:

<table>
<thead>
<tr>
<th>Component</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exams</td>
<td>70%</td>
</tr>
<tr>
<td>Laboratory</td>
<td>25%</td>
</tr>
<tr>
<td>Homework and problem sets</td>
<td>10%</td>
</tr>
</tbody>
</table>

Your final grade will be based on the traditional grading scale.
Grades in the 90’s are A’s, 80’s are B’s, 70’s are C’s, 60’s are D’s, etc…

Incomplete grades are given only when an unforeseen emergency prevents a student from completing the course work. Division chairs must approve all "I" grades.

Withdrawal Policies
The deadline for withdrawing from this course with a W is June 25, 2019. If you do not file the appropriate forms by that date, you will receive a performance grade which may be an "F."

Financial Aid Statement
Students who are receiving any form of financial aid should check with the Financial Aid Office prior to withdrawing from classes. Withdrawals may affect your eligibility to receive further aid and could cause you to be in a position of repayment for the current semester. Students who fail to attend or participate after the drop date are also subject to this policy.

Other Policies
1. Students are expected to attend class and lab regularly and complete tests and assignments on time. Please meet with me following an absence so alternate arrangements can be made for lab.
2. Students receiving financial aid must show participation prior to the certification date. Do not drop or stop attending without consulting with the Financial Aid office to prevent adverse consequences.
3. If you are a student with a disability and/or special needs who requires accommodations, please contact the College Disability Services Office in S-124.
4. If you will be absent due to a religious observance, please let your instructor know at the beginning of the semester to make alternate arrangements.
5. Scholastic dishonesty is a violation of the Code of Student Conduct. Scholastic dishonesty includes, but is not limited to cheating on a test, plagiarism and collusion. As a college student, you are considered a responsible adult. Your enrollment indicates acceptance of the Dallas County Community Colleges Code of Student Conduct published in the college catalog.

6. You will be able to view your grades during the semester on eCampus and your final grade on eConnect after the instructor submits the final grade.

7. Effective Fall 2005, the Dallas County Community Colleges will charge additional tuition to students registering for the same course for a third or subsequent time since Fall 2002.

8. **Stop before you drop!** If you enrolled in a college level course after Fall 2007, you cannot drop more than 6 courses in your entire undergraduate career unless the drop qualifies as an exemption. Please check with the Advising Office in S-113 for more information.

9. The Family Educational Rights and Privacy Act (FERPA) is a Federal Law that protects students and gives you certain rights. These include the right to inspect and review education records, seek amendment of education records, consent to the disclosure of education records, and file a complaint with the FERPA Office in Washington D.C. Please check the DCCCD website under FERPA for more information.

10. NO CELL PHONES and NO TEXTING in class, lab or in the testing center. Cell phones may not be used as calculators.

11. Laptop computers may be used during class only to take notes or if you have an ebook version of the textbook.

12. The instructor reserves the right to amend the syllabus as necessary.

13. **Concealed Carry**-
 Any person who holds a license to carry may carry a concealed handgun on college district property as permitted by law and college district policy. A license holder who carries a handgun on college district property must keep it concealed and on or about their person at all times. The open carry of a handgun (i.e., completely or partially visible) is prohibited on college district property, including any public driveway, street, sidewalk, walkway, parking lot, parking garage or other parking area.

 Weapons-
 The use, possession or display of a weapon in violation of law and college district policy is strictly prohibited. This prohibition applies to firearms, knives, clubs, fireworks of any kind, incendiary devices, razors, chains, throwing stars and any other device designed to expel a projectile or to inflict bodily harm. Violations may result in disciplinary action and/or criminal penalties.

Special Help
Please come and see me during my office hours if you need help during the semester. You can also schedule a meeting at other times. Mr. Chaz Hafey is available for assistance with problem-solving during open lab times. His hours are posted in lab K-251.

STEM Resource Center
Tutoring is available for physics, mathematics and engineering in room K-137 (formerly the Math Lab). Feel free to use the facility as a workstation for studying and working on homework problems.