Semester and Year: Spring 2019
Meeting Dates: TR
Section: 83005
Class time and days: Lecture: TR 2:00-3:20
Lab: TR 3:30-5:30
Room: Lecture: WH277
Lab: SH148
Instructor: Ye Luo
Contact Info: Office: SH263
Office phone: 972-761-6727
Email: yluo@dccc.edu
Office hours: MF: 11:00-12:45; TR: 1:15-2:00
Last date to withdraw: April 17, 2019
Final Exam Day and time: Tuesday, May 14, 2019, 2:00-3:50

Evaluation Procedures:
Course grade is determined as follows:
- 3 Lecture quizzes (90pts each) = 270
- Final exam (last chapters (90 pts) + comprehensive (40pts)) = 130
- 2 Lab practicals (100 pts each) = 200
- 8 Mastering Microbiology online homework assignments (10 pts each) = 80
- 8 Lab quizzes (10 pts each) = 80
- Unknown ID = 15
- Case study = 15
- Lecture & Lab activity and responsibility = 10

Total Points = 800
Final Grade Determination:
720- 800 = A
640- 719 = B
560- 639 = C
480- 559 = D
less than 480 = F

[This may change at the discretion of the instructor.]
Attendance Policy:
In order to be successful, students must attend and participate each class and lab. Attendance is necessary for class participation and course work. There will be no make-up opportunities for missed assignments.

If you are unable to complete this course, it is your responsibility to withdraw formally—by April 17, 2019. The withdrawal request must be received in the Registrar’s Office by the drop date. Failure to do so will result in your receiving a performance grade, usually an “F.”

ISBN: 9780134402789

Required Materials:

3 Options for students to buy:

Notes: Mastering Course ID: MMBLUO1983005
B. Online Lab Manual at http://delrio.dcccd.edu/jreynolds/microbiology/RLCmicroindex.html
More lab documents are available at the website, including handouts, pictures, practice samples, etc. Students are responsible for making their own hard copies of lab exercises.
C. LAB MATERIALS NEEDED: safety glasses, lab coat/smock, sharpie pen, masking tape, gloves.

Class Calendar and Units of Instruction: on the last page.

Instructor Policies and Suggestions for Success:
- Please turn off your mobile phones/devices during class periods.
- No Food or drinks will be permitted in the laboratory.
- You are expected to take good care of all the equipment/materials provided to you in the lab. It is your responsibility to keep your working area and materials clean.
- You will be expected to utilize your time in the lecture/lab session efficiently. Conversations other than those related the topic of the lab session will not be allowed. Student(s) may be asked to leave the classroom/lab at the discretion of the instructor if persistent talking during class.
- Be prepared to be an active independent learner and to work cooperatively with other students as well.
- Consider this class as or more important than your job. It is not O.K. to leave lab early, or miss lab completely, because of work.
- Attendance and note-taking will provide an efficient way to succeed in the class.
- It is suggested that you will need to spend at least 2 hours of reading and self-study for each hour of lecture. If you cannot or will not do this, you might want to re-think this class. Be realistic about your work and class schedule when registering.

Academic Misconduct Regarding Exams & Lab Practicals:
Students should not leave during an exam or a lab practical to use the bathroom. Go BEFORE the test.
Cheating on tests and lab practices include, but is not limited to, the following activities:
- looking onto someone’s answer sheet, even if you do not use their answers,
- knowingly allowing someone to look onto your answer sheet,
- using a cheat sheet, or other unauthorized material or looking at cell phone,
- talking to someone or otherwise exchanging information during an exam,
- asking someone what is on a lab practical or telling someone what is on a lab practical,
- waiting out in the hallway when people have just taken the exam to hear them discuss the lab exam.
- removing from lab any material meant to stay in lab, e.g., models, dissected organs, etc.,
- writing answers on the table
- writing answers on the question card
- going or looking into a lab where the lab practical is set up, and,
- getting the answer key before the test.

Any student violating any rule(s) above will get a ZERO on the lecture exam and lab practical.
Institutional Policies:
Institutional Policies relating to this course can be accessed from the following link
www.richlandcollege.edu/syllabipolicies

RICHLAND COLLEGE’S QUALITY ENHANCEMENT PLAN ~ LEARNING TO LEARN: DEVELOPING LEARNING POWER:
Richland College is piloting its Quality Enhancement Plan (QEP) in select classes. The QEP provides techniques, practices, and tools to help students develop the habits, traits or behaviors needed to be effective and successful lifelong learners in college and in life. For more information, please check QEP 2013 (http://www.richlandcollege.edu/qep)

ACADEMIC PROGRESS: Students are encouraged to discuss academic goals and degree completion with their instructors. Specific advising is available throughout the semester. Check Richland College Steps to Success (http://www.richlandcollege.edu/admissions/process.php) Also, consult the Advising Syllabus http://richlandcollege.edu/assets/uploads/2015/02/advising-syllabus.pdf regularly to check if you are on track.

DCCCD CATALOG COURSE DESCRIPTION
Study of the morphology, physiology, and taxonomy of representative groups of pathogenic and nonpathogenic microorganisms. Emphasis is placed on applications to humans. Pure cultures of microorganisms grown on selected media are used in learning laboratory techniques. Includes a brief preview of food microbes, public health, and immunology. Designed for non-science majors and allied health students. (3 Lec., 4 Lab.)

PREREQUISITES
BIOL 1406 or BIOL 2401 or SCIT 1407. One of the following must be met: Student cannot take both BIOL 2420 and BIOL 2421 to satisfy the Core science credit.

ACGM COURSE DESCRIPTION AND LEARNING OUTCOMES
This course covers basic microbiology and immunology and is primarily directed at pre-nursing, pre-allied health, and non-science majors. It provides an introduction to historical concepts of the nature of microorganisms, microbial diversity, the importance of microorganisms and acellular agents in the biosphere, and their roles in human and animal diseases. Major topics include bacterial structure as well as growth, physiology, genetics, and biochemistry of microorganisms. Emphasis is on medical microbiology, infectious diseases, and public health.

The lab part of this course covers basics of culture and identification of bacteria and microbial ecology. This course is primarily directed at pre-nursing and other pre-allied health majors and covers basics of microbiology.

Learning Outcomes
Upon successful completion of this course lecture part, students will:
1. Describe distinctive characteristics and diverse growth requirements of prokaryotic organisms compared to eukaryotic organisms.
2. Provide examples of the impact of microorganisms on agriculture, environment, ecosystem, energy, and human health, including biofilms.
3. Distinguish between mechanisms of physical and chemical agents to control microbial populations.
4. Explain the unique characteristics of bacterial metabolism and bacterial genetics.
5. Describe evidence for the evolution of cells, organelles, and major metabolic pathways from early prokaryotes and how phylogenetic trees reflect evolutionary relationships.
6. Compare characteristics and replication of acellular infectious agents (viruses and prions) with characteristics and reproduction of cellular infectious agents (prokaryotes and eukaryotes).
7. Describe functions of host defenses and the immune system in combating infectious diseases and explain how immunizations protect against specific diseases.
8. Explain transmission and virulence mechanisms of cellular and acellular infectious agents.
Upon successful completion of this course lab part, students will:
1. Use and comply with laboratory safety rules, procedures, and universal precautions.
2. Demonstrate proficient use of a compound light microscope.
3. Describe and prepare widely used stains and wet mounts, and discuss their significance in identification of microorganisms.
4. Perform basic microbiology procedures using aseptic techniques for transfer, isolation and observation of commonly encountered, clinically significant bacteria.
5. Use different types of bacterial culture media to grow, isolate, and identify microorganisms.
6. Perform basic bacterial identification procedures using biochemical tests.
7. Estimate the number of microorganisms in a sample using methods such as direct counts, viable plate counts, or spectrophotometric measurements.
8. Demonstrate basic identification protocols based on microscopic morphology of some common fungi and parasites.

CORE CURRICULUM STATEMENT
The objective of the study of a natural sciences component of a core curriculum is to enable the student to understand, construct, and evaluate relationships in the natural sciences, and to enable the student to understand the bases for building and testing theories.

Intellectual Competencies:
- **READING:** the ability to analyze and interpret a variety of printed materials - books, documents, and articles - above 12th grade level.
- **WRITING:** the ability to produce clear, correct and coherent prose adapted to purpose, occasion and audience - above 12th grade level.
- **SPEAKING:** ability to communicate orally in clear, coherent, and persuasive language appropriate to purpose, occasion, and audience above 12th grade level.
- **LISTENING:** analyze and interpret various forms of spoken communication, possess sufficient literacy skills of writing, reading - above 12th grade level.
- **CRITICAL THINKING:** think and analyze at a critical level.
- **COMPUTER LITERACY:** understand our technological society, use computer-based technology in communication, solving problems, and acquiring information.
<table>
<thead>
<tr>
<th>Week of</th>
<th>Lecture Topic</th>
<th>Date</th>
<th>HW & LabQuiz</th>
<th>Lab Topic</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jan 21</td>
<td>Martin Luther King Holiday on Monday</td>
<td>M T</td>
<td>WR</td>
<td>No Lab</td>
</tr>
<tr>
<td></td>
<td>Classes start on Tuesday</td>
<td></td>
<td></td>
<td>Introduction, Safety and Check in</td>
</tr>
<tr>
<td></td>
<td>Ch1 - History</td>
<td></td>
<td></td>
<td>Mock epidemic, Ubiquity of Bacteria</td>
</tr>
<tr>
<td>Jan 28</td>
<td>Ch3 - Cell Structure & Function</td>
<td>M T</td>
<td>W R</td>
<td>Transfer of bacteria, Pure Culture Techniques</td>
</tr>
<tr>
<td></td>
<td>(Focus on prokaryotes & Self-study eukaryotes)</td>
<td></td>
<td></td>
<td>Microscopy Use, Preparation of Specimens</td>
</tr>
<tr>
<td>Feb 4</td>
<td>Ch4 - Microscopy and Specimen Preparation</td>
<td>M T</td>
<td>W R</td>
<td>Capsule Stain, Motility tests</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gram Stain, Spore Stain, Acid-fast Stain</td>
</tr>
<tr>
<td>Feb 11</td>
<td>Ch5 - Metabolism</td>
<td>M T</td>
<td>W R</td>
<td>Counting Bacteria</td>
</tr>
<tr>
<td></td>
<td>LECTURE EXAM 1</td>
<td></td>
<td></td>
<td>Environmental Conditions & Growth</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Effects of Temperature, Surgical Handscrub</td>
</tr>
<tr>
<td>Feb 18</td>
<td>Ch6 - Nutrition & Growth</td>
<td>M T</td>
<td>W R</td>
<td>No Lab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antibiotic (Kirby-Bauer) Sensitivity</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Antimicrobial Chemicals</td>
</tr>
<tr>
<td>Feb 25</td>
<td>Ch9, 10 - Control of Microorganisms</td>
<td>M T</td>
<td>W R</td>
<td>Ectoparasites</td>
</tr>
<tr>
<td></td>
<td>No Class Thursday and Friday</td>
<td></td>
<td></td>
<td>Unknown ID 1</td>
</tr>
<tr>
<td></td>
<td>(TCCTA Meeting)</td>
<td></td>
<td></td>
<td>UNKNOWN BACTERIUM ASSIGNED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stocks on TSA slant and TSB, Oxygen Requirements,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gram Stain, Streak TSA Plate for Colony Morphology</td>
</tr>
<tr>
<td>Mar 4</td>
<td>Ch 11, 12 - Classifying Prokaryotes & Eukaryotes</td>
<td>M T</td>
<td>W R</td>
<td>Protozoa, Fungi</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>LAB PRACTICAL #1</td>
</tr>
<tr>
<td>Mar 11</td>
<td>SPRING BREAK</td>
<td></td>
<td></td>
<td>SPRING BREAK</td>
</tr>
<tr>
<td>Mar 18</td>
<td>Ch 19 - Gram-Positive Bacteria</td>
<td>M T</td>
<td>W R</td>
<td>Ectoparasites</td>
</tr>
<tr>
<td></td>
<td>LECTURE EXAM 2</td>
<td></td>
<td></td>
<td>Unknown ID 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNKNOWN BACTERIUM ASSIGNED</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Stocks on TSA slant and TSB, Oxygen Requirements,</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Gram Stain, Streak TSA Plate for Colony Morphology</td>
</tr>
<tr>
<td>Mar 25</td>
<td>Ch 20 - Gram-Negative Bacteria</td>
<td>M T</td>
<td>W R</td>
<td>ID 2 – IMViC, TTC, Phenol Red broth, Oxidase, Catalase</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ID 3 – Nitrate, Decarboxylase, Deaminase, Gelatin</td>
</tr>
<tr>
<td>Apr 1</td>
<td>Ch 21 - Atypical Bacteria</td>
<td>M T</td>
<td>W R</td>
<td>Staph & Strep ID 1</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ID 4 – Skim Milk, Lipid, Starch, Urea</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ID 5 – Additional Tests as Needed</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>API 20E identification</td>
</tr>
<tr>
<td>Apr 8</td>
<td>Ch 13 - Viruses</td>
<td>M T</td>
<td>W R</td>
<td>Staph & Strep ID 2</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>UNKNOWN DUE</td>
</tr>
<tr>
<td>Apr 15</td>
<td>Ch 24 - DNA Viruses</td>
<td>M T</td>
<td>W R</td>
<td>Staph & Strep ID 3</td>
</tr>
<tr>
<td></td>
<td>LECTURE EXAM 3</td>
<td></td>
<td></td>
<td>Urine culture</td>
</tr>
<tr>
<td></td>
<td>Apr 17 – LAST DAY TO WITHDRAW</td>
<td></td>
<td></td>
<td>Staph & Strep ID Finish</td>
</tr>
<tr>
<td></td>
<td>No Class Friday - Spring Holiday</td>
<td></td>
<td></td>
<td>Serological Testing – DEMO</td>
</tr>
<tr>
<td>Apr 22</td>
<td>Ch 25 - RNA Viruses</td>
<td>M T</td>
<td>W R</td>
<td>Lab Cleanup</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Staph & Strep ID 4</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Bacteriophages</td>
</tr>
<tr>
<td>Apr 29</td>
<td>Ch 14 - Infection & Epidemiology</td>
<td>M T</td>
<td>W R</td>
<td>Disease Presentation</td>
</tr>
<tr>
<td>May 6</td>
<td>Ch 15-16: Immunity</td>
<td>M T</td>
<td>W R</td>
<td>LAB PRACTICAL #2</td>
</tr>
<tr>
<td>May 13</td>
<td>Final Exam</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>