Course Description: This course will examine histology, the integument, the skeletal system, the muscular system and the nervous system of the human and other mammals.

Prerequisite—C or better in Biol 1406 or equivalent.

Course Objectives:
1. Identify the structures and understand functions of tissues, integument, skeletal, muscular, and nervous systems.
2. Understand the interrelationships among the various organ systems.
3. Understand regulatory mechanisms and homeostatic control of the organism.
4. Develop an understanding of the organism as a “whole” and the contributions each organ system makes.

Course Management:
This course will rely heavily on teams and team-work. You will be sorted into teams on the first day in lab. Teams will consist of 4 (or 3) people. A considerable portion of your grade will depend on your team members.

Required Materials: available in the bookstore and elsewhere.

1. **Textbook:** Good news: your textbook for this class is available for free online! If you prefer, you can also get a print version at a very low cost.

 Your book is available in web view and PDF for free. You can also choose to purchase on iBooks or get a print version via the campus bookstore or from OpenStax on Amazon.com.

 You can use whichever formats you want. Web view is recommended -- the responsive design works seamlessly on any device. If you buy on Amazon, make sure you use the link on your book page on openstax.org so you get the official OpenStax print version. (Simple printouts sold by third parties on Amazon are not verifiable and not as high-quality.)

OR ANY college level A&P text: Suggested Authors: Seeley, Marieb, Tortora, Martini, Amerman (Do NOT purchase or use Hole’s book).

2. LAB BOOK: Human Anatomy and Physiology Laboratory Manual, 11th ed. (10th or 9th ed) by Marieb and Mitchell
3. Scantrons for quizzes, lecture and lab exams.

Attendance:

Regular attendance in this class is ESSENTIAL and is your responsibility. These classes progress so quickly that even a single absence can negatively impact your grade. If you miss a class you will be depriving your team of your expertise for that quiz or test.

Cheating:

Cheating, in any form, will not be tolerated UNDER ANY CIRCUMSTANCES. Please refrain from even the appearance of cheating. It can result in major consequences.

Food or Drink:

It is the policy of North Lake College that NO FOOD OR DRINK is allowed in classrooms or laboratories. Closed containers such as water bottles are permitted.

E-CAMPUS:

E-campus will be used extensively in this class. The web address is ecampus.dcccd.edu (NOTE: There is NO www in front of the web address).

Prior to the first day of classes each student MUST sign onto e-campus and fill out the student profile including a valid email address. E-campus will be used to communicate with students and to post grades.

LETTERS OF RECOMMENDATION

Some of you will undoubtedly be applying to nursing school, dental school, medical school, graduate school, etc., sometime in the future. I get many requests each semester from students for letters. Unfortunately, considering the volume of students in this class, I do not get the opportunity to get to know students as individuals. When asking for letters of rec for programs, it is important that a student choose a recommender that does not just know how he/she performed on exams, but who knows something about his/her personality, quality of work, interests, interactions with others, etc., which I do not have the chance to observe in lecture. You want a recommender who can write something like “I have personally observed in this student the strength of will, dedication and perseverance required for the profession”, rather than “The student demonstrated excellent knowledge of the subject, with a grade of “A” in my class.” Therefore, I
will only write LOTR for students that I have interacted with to a high degree in class or lab. This is another reason to participate fully in class and lab.

Grading Policy:

1) **Lecture:**

There will be **FOUR LECTURE EXAMS.** Lecture exams will be given in the **Testing Center** (A425, phone 972-273-3160). You will have about 3 days to take the exam. TESTING CENTER hours are 8:30 am to 8:30 pm on MTWR and 8:30 to 3:30 on FS. The TESTING CENTER will NOT give out exams AFTER 2:00 pm on FS. The TESTING CENTER is **closed on Sunday.** No make-up lecture tests will be given. Please see rules for TESTING CENTER later in the syllabus.

Lecture Exams

Lecture exams will consist 80 objective questions consisting of multiple choice, matching, labeling diagrams, and fill in the blank **AND 2 short answer/essay question from the list at the end of the syllabus**—each student will get a different pair of questions so all should be prepared ahead of time. In addition the other questions are helpful as a study guide. Lecture exams will comprise **50% of the Final Grade.** Each lecture exam may be taken **twice**—the higher grade will be used for grade calculation. There are multiple versions of the lecture exams.

Quizzes:

This class requires quite a bit of preparation outside of class. To make sure that you DO NOT get behind there will be **QUIZZES over the previous materials** (typically 15 questions). Quizzes are **team-based.** You will collaborate with your team-members and decide on the correct answers.

Quizzes are given **IN LECTURE OR LAB.** Please do NOT be late. **LAB QUIZZES** are announced but **LECTURE QUIZZES ARE UNANNOUNCED.** If you are late for the quiz you will not be allowed to take it with the group and you will not get the benefit of the group portion of the grade. **Quizzes CANNOT BE MADE UP!!!** However, the lowest 4 quizzes will be dropped.
QUIZ GRADE MODIFICATION: To insure that each member of a group is adequately contributing to the team a quiz grade modifier will be added. Each member of a group will evaluate the other members by adding a grade modifier to their GROUP QUIZ grades.

EX. Member A is contributing fully to their group: they are present and on time and are prepared; they discuss and contribute the knowledge of the group.

Member B is never on time: they are unprepared and do not contribute very much to the quizzes.

Member C is participating sometimes but not fully.

Team Member Evaluation by Member D as follows:

- Member A modifier……………100%
- Member B modifier……………..50%
- Member C modifier……………...75%

An average of all members results in A: 100% B: 70% C: 80% D: 90%

GRADE MODIFICATIONS
Quiz average for A x 1.00
Quiz average for B x .70
Quiz average for C x .80
Quiz average for D x .90

We will switch groups after the second lab exam.
Quizzes will comprise 25% of the Final Grade.

2) Laboratory:

There will be FOUR LAB EXAMS. These will be given in lab and will consist of a combination of 50 practical and objective questions. Please do NOT be late for lab. Lab exams CANNOT BE MADE UP. If you know you will miss an exam please contact the instructor PRIOR to the exam (some accommodation may be possible).

Lab exams will comprise 25% of the Final Grade.
Determination of Final Grade

Average of 3 Lecture Exams \(x \) 50%
Average Quizzes (drop 3 lowest) \(x \) 25%
x modifier
Average of 3 Lab Exams \(x \) 25%

\(100\% \)

FINAL GRADE

<table>
<thead>
<tr>
<th>Final Grade</th>
<th>Total Average</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 and above</td>
</tr>
<tr>
<td>B</td>
<td>80-89</td>
</tr>
<tr>
<td>C</td>
<td>70-79</td>
</tr>
<tr>
<td>D</td>
<td>60-69</td>
</tr>
<tr>
<td>F</td>
<td><60</td>
</tr>
<tr>
<td>Lecture sequence of topics</td>
<td>Textbook (most of them anyway)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------</td>
</tr>
<tr>
<td>Introduction to the Human Organism</td>
<td>Ch 1</td>
</tr>
<tr>
<td>Organ Systems Overview</td>
<td>Ch 1</td>
</tr>
<tr>
<td>Histology</td>
<td>Ch 4</td>
</tr>
<tr>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>Integument and Membranes</td>
<td>Ch 5</td>
</tr>
<tr>
<td>Bone Tissue</td>
<td>Ch 6</td>
</tr>
<tr>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>Nervous Tissue</td>
<td>Ch 11</td>
</tr>
<tr>
<td>Muscle Tissue</td>
<td>Ch 9</td>
</tr>
<tr>
<td>Exam 3</td>
<td></td>
</tr>
<tr>
<td>Central Nervous System</td>
<td>Ch 12, 13</td>
</tr>
<tr>
<td>Peripheral Nervous System</td>
<td>Ch 12, 13</td>
</tr>
<tr>
<td>Autonomic Nervous System</td>
<td>Ch 16</td>
</tr>
<tr>
<td>Exam 4</td>
<td></td>
</tr>
<tr>
<td>Lab sequence of topics</td>
<td>Marieb and Mitchell</td>
</tr>
<tr>
<td>Placement Exam</td>
<td>Ex 1</td>
</tr>
<tr>
<td>Language of Anatomy</td>
<td>Ex 7</td>
</tr>
<tr>
<td>Integumentary System</td>
<td>Ex 7</td>
</tr>
<tr>
<td>Axial Skeleton—skull</td>
<td>Ex 10</td>
</tr>
<tr>
<td>Fetal skull</td>
<td>Ex 12</td>
</tr>
<tr>
<td>Exam 1</td>
<td></td>
</tr>
<tr>
<td>Axial Skeleton—vertebral column</td>
<td>Ex 10</td>
</tr>
<tr>
<td>Appendicular Skeleton—upper appendage</td>
<td>Ex 11</td>
</tr>
<tr>
<td>Appendicular Skeleton—lower appendage</td>
<td>Ex 11</td>
</tr>
<tr>
<td>Exam 2</td>
<td></td>
</tr>
<tr>
<td>Joints and Movements</td>
<td>Ex 13</td>
</tr>
<tr>
<td>Gross Anatomy of the Muscular System</td>
<td>Ex 15</td>
</tr>
<tr>
<td>Exam 3</td>
<td></td>
</tr>
<tr>
<td>Spinal Cord and Spinal Nerves</td>
<td>Ex 21</td>
</tr>
<tr>
<td>Gross Anatomy of the Brain and Cranial Nerves</td>
<td>Ex 19</td>
</tr>
<tr>
<td>Exam 4</td>
<td></td>
</tr>
</tbody>
</table>
Questions for Lecture Exams and to be used as a study guide for both lecture and lab. REMEMBER there are FOUR LAB EXAMS and THREE LECTURE EXAMS....some materials may only be one or the other; some materials may be on BOTH.

UNIT 1

Introduction (lecture only):

What is anatomy? What is physiology? How are they different? Why study them together?

List the major parts and major functions of all of the body systems.

What is homeostasis? Describe it.

What are feedback systems? What are the components of a feedback system? How do they work?

What is negative feedback? What is positive feedback? How are they involved in homeostasis? Graph each!!

Give mechanical and biological examples of negative and positive feedback systems. Which is more common in the body?

Cavities, Planes of Dissection (lab only):

The human body can be sectioned by cutting it from various directions. Name and describe the planes (sections) used in human anatomical studies. At home, practice making sections on a banana! Identify sections by drawing and description.

Name and describe the sections used to describe tubes or organs. Why are they different than those used for an entire organism?

Label the body with the correct anatomical terms. These should be learned as soon as possible. Flip through the book—notice how these terms are used again and again.

What are anatomical landmarks? Complete Exercise 15 in the lab book using your own body and mirrors. How could these landmarks be used in a clinical situation?

What does dorsal, ventral, posterior, anterior, superior, inferior, medial, lateral, cranial, caudal, proximal, distal, superficial and deep mean? Practice using these—be able to identify them from a picture or a description. Use them as comparative terms. Practice them with your group members.

Draw and label the quadrants and regions of the trunk. What are the major organs in each? Are there organs that are found in more than one quadrant or region?

Why are region and quadrants used? Which is used more commonly in anatomy? medicine?

List the enclosed cavities—Draw and label the major ones and their subdivisions. What organs are located within these cavities?

List the serous membranes that line the ventral cavities. How many layers do serous membranes contain? Draw and label each. Practice these membranes using bubble wrap.

List the exposed cavities. Draw and label the major ones.

List the mucous membranes that line the exposed cavities. How many layers does a mucous membrane consist of? How are these membranes named?
Tissues (lab only):

What are the three embryonic (primary) tissues? Which adult tissue does each become?

What are the four adult tissues. What are the defining characteristics of each?

How are epithelial tissues named? How many layers are involved? How are cell shapes named? What does the name “ciliated pseudostratified columnar epithelium” tell you about this tissue?

Draw each epithelial tissue and describe it. Where are each located? What are their functions?

Compare and contrast exocrine and endocrine glands. Give an example of each.

Discuss the anatomical (structural) classifications of exocrine glands—What are the differences among acinar (alveolar), tubular and tubuloacinar.

Discuss the secretion (functional) patterns of exocrine glands. How do holocrine, apocrine and merocrine glands secrete their products?

What is mesenchyme? Why is it called an undifferentiated tissue? Which tissues can it become?

Discuss connective tissues. What is ground substance? What is matrix? Name the fibers present in matrix. Describe each. What are the different cell types found in connective tissues?

Name the different categories of connective tissues. What are the characteristics of each? Draw and identify each tissue. Where are the different tissues located? What are their functions?

In what tissue(s) would you find fibroblasts? osteocytes? chondrocytes? adipocytes? reticulocytes? erythrocytes and leucocytes?

Discuss the 3 types of muscle. Where is each found? What are their functions?

How are they “specialized tissues”? What are they specialized to do? Where is each type of muscle found? Draw and label each.

What does striated mean? What are intercalated discs? Be able to differentiate these by picture or description.

Discuss nervous tissue. What are neurons and neuroglia? Draw and label each of these. Where is each found? What are their functions?

UNIT 2

Integument (lecture and lab):

Describe the integument. Discuss the epidermis, dermis and hypodermis layers. What type(s) of tissue is found in each?

Discuss (draw and label) the five layers of the epidermis of thick skin from the outside in. What are the primary functions of each layer? Which layers are dead cells? Which layer is missing in thin skin?

Discuss the cells of the epidermis. What are Keratinocytes? Melanocytes? Merkel cells? Langerhans cells? What are their functions?
What is keratin? What are the different types? Why are they important? Besides the epidermis where else is keratin found?

Describe the different types of tactile (touch) receptors (including the root hair plexus) located in the skin. How does each differ in structure and function?

How does “hair stand on end”? What purposes does it serve? What is the muscle called that produces this? What type of muscle is it?

Discuss the cross sectional anatomy of a hair follicle. Draw and label the different layers from the outside in or inside out. Know what each layer is made from. Discuss the cross-section of the hair itself.

Discuss the types of glands found in the integument. Classify each according to shape and according to secretion method. What are their products? Where are they found?

List the 3 things that contribute to skin color. Discuss skin coloration and UV light. Why do peoples of the Earth vary so much in skin tone? What do rickets, vitamin D, and cancer have to do with skin color?

Discuss the 3 degrees of skin burns. What are the “defining” characteristics of each? What is the rule of nines? Describe it. Why is it useful in medicine? When are burns considered “critical”?

Bones and Bone Markings (lab only):

What are the 3 ways in which bones are classified?

What are the divisions of the skeleton? What are the shape classifications for bone? What type bones belong to the so-called “special” shape classification? Be able to classify each bone.

How many named bones in the entire skeleton? Name the bones of the Axial skeleton. How many are there? Name the bones of the Appendicular skeleton. How many are there?

Name the bones of the skull. How many cranial bones are there? How many facial bones are there? What are the ear ossicles? How are each of the skull bones classified?

How many named bones in one hand? In one foot? In one leg (including foot)? In one arm (including hand)? In the skull? In the ribcage? How are each classified?

What two bones comprise the pectoral girdle? How are they classified?

How many pairs of ribs does a man have? a woman? What are vertebrosternal (true) ribs? Vertebrochondral (False) ribs? Vertebral (Floating ribs?)

How many vertebrae are there? How are they classified? What are the divisions of the spinal column? How many vertebrae in each?

List and describe the parts of a typical vertebra. How are vertebra classified?

Describe each type of vertebra. What is unique to each type? List the differences you would use to decide what type of vertebra one is.

What are the normal curvatures of the spine? Which 2 are primary? Which 2 are developmental (secondary)? Name 3 abnormal curvatures of the spine and give the area in which they are located.

How many vertebrae fuse to form the sacrum? The coccyx? Describe these bones.
What bones comprise the pelvic girdle? How are they classified? How is the number different for adults and children? Why are the numbers different?

What is the difference between a pelvic girdle and a pelvis? Describe the “true” pelvis vs the “false” pelvis?

Describe the anatomical features (acetabulum, pubic angle, pelvic inlet (brim), pelvic outlet, etc.) of the pelvis of the male and female. How do female and male pelvis differ? How is a female pelvis more suited to child birth?

Bone Tissue (lecture and lab):

Compare and contrast the structure of spongy bone and compact bone. Draw and label an osteon with the following: canaliculi, central canal, lamellae, perforating canals, lacunae. What are trabeculae?

Describe what happens when you soak a bone in vinegar? Put it in an oven? Why? What is it about the structure of bone that changes when these things are done?

Describe a long bone. Draw and label one. What is an epiphysis? A diaphysis? A medullary canal? An epiphyseal plate? An epiphyseal line? How does a child’s long bone look different than an adult’s long bone?

Compare and contrast intra-membranous ossification and endochondral ossification. Name 3 bones that form in each way.

Name the different types of bone cells? Draw each. What is the function of each? Where are each found?

What is remodeling? Describe the process. When and why does it take place?

Describe the fetal/infant skull? What are fontanels? What is their function? What would happen if the fontanels closed prematurely? Draw and label the major fontanels.

Define the following terms: trochanter, tubercle, fissure, fossa, foramen, condyle, spine, process, crest, line, notch, tuberosity, groove, canal.

Name the carpals in order proximal row first (lateral to medial) distal row second (lateral to medial)—What is the point of “steve left the party….to take cathy home”?

Name the tarsals in order distal row first (medial to lateral) proximal row second (medial to lateral)—What is the point of “my instructor lectures constantly….never to cease”?

Describe the roles of human growth hormone and the sex hormones in the maintaining the homeostasis and growth of the skeleton.

What effect does castration (removal of the gonads) before puberty have on adult height? Why is this true? Describe the growth pattern of a castrated individual compared to an intact individual.

What are the normal blood levels of calcium ions? Where is most calcium of the body found/stored? Discuss the regulation of blood calcium by PTH and Calcitonin. What is the effect of these hormones on bone cells and bone mass?
What are the targets of PTH and Calcitonin? How do they affect each?

UNIT 3

Neurophysiology (lecture only):

Describe the organization of the nervous system. What is the CNS? What is the PNS?
What does SA, SE, VA, VE (ANS) mean? What are the two divisions of the VE (ANS)?

What are the 3 functions of the nervous system? Describe each?

What are the 3 structural types of neurons? Draw and describe each. Label the different parts. What is the function of each?

What are the 3 functional types of neurons? Draw and describe each. What is the function of each?

What are the six types of neuroglia? What is the function of each? Where do you find each?

What is myelin? Why is it important? Which cells produce myelin in the CNS? In the PNS?

Discuss the structure of the neuron cell membrane. What are the functions of the proteins in the membrane?

Describe channels. What are the different types? How do leak channels differ from gated channels? What are the different types of gated channels? What causes each to open?

Describe the sodium/potassium/ATPase pump. What does it do? In what ratio? Why is this important?

Discuss the ions sodium and potassium and their importance in the nervous system.

What is the trans-membrane potential? How is it measured? Calculated? How are sodium and potassium involved?

What is the Nernst equation? Write it. Discuss how changes in the concentrations of Na+ and K+ affect the transmembrane potential.

Discuss resting potential? How is it produced? Maintained? What is the average voltage across the membrane on neurons? Describe the characteristics of the neuron cell membrane (pumps, channels, etc.) and its environment (ion concentrations) that contribute to the resting potential.

What is a stimulus? Name the two types of stimuli. Which ion is associated with each? Define Depolarization? Repolarization? Return to Resting Potential? How are these related to stimuli?

Discuss graded potentials. How long do they last? How far do they travel? What are their sizes? What does their size depend on?

Discuss action potentials. How long do they last? How far do they travel? What happens at Threshold Potential? Which gates open? Which ion moves?

Draw and label the graph of an action potential (AP), including all appropriate ion movements, opening and closing of channels, etc.

List the characteristics of an AP vs a graded potential. Compare and contrast an AP with a graded potential. List all the differences!!
Discuss continuous conduction and saltatory conduction. Which is faster? Why? What substance is required for saltatory conduction? Which cells make it? What would happen if you interfere with the production, maintenance, or distribution of this substance? What are neurofibral nodes (Nodes of Ranvier)? Why are they important?

Discuss the steps in synaptic transmission. What is a neurotransmitter? What ion is important for vesicle migration and neurotransmitter release? What would happen if you interfere or enhance the amount of the ion?

What is ACH? What is ACHe (acetylcholinesterase)? Why is having ACHe just as important as having ACH?

Sarin (gas) is a toxin which inhibits ACHe. Tetradotoxin (from the puffer fish) is a toxin that prevents voltage gated sodium channels from opening. Atropine (from deadly nightshade plant) prevents chemical gated channels from opening. The above are poisons. What effect would each of these have on the function of neurons? Describe what happens when you ingest each of these. How do each “kill” you?

What is an EPSP? an IPSP? Which channels and which ions are involved in each? Do they result in a depolarization or hyperpolarization? Why are they graded potentials?

Discuss temporal and spatial summation. How many neurons are involved with each? How and when do they fire? What is each “used” for?

How does presynaptic facilitation and presynaptic inhibition work? How is calcium involved? What effects do they produce? Describe a situation where each is seen.

Muscle physiology (lecture only):

What are the 4 properties that all muscles share?

Compare and contrast the 3 types of muscle. Draw a picture of each.

What are the connective tissue coverings of skeletal muscle. What tissue comprises each? What does each surround?

Discuss the structure of a skeletal muscle cell. What are myofibrils? What is the sarcoplasmic reticulum? What ion does the SR contain? What are transverse tubules?

Draw and label a sarcomere. Include all bands, zones, lines, thick filaments and thin filaments.

What proteins (3) make up the thin filament? What binding sites does each contain?

What protein (1) makes up the thick filament? What binding sites does it contain? What is important about the “neck or hinge” region?

List the steps in a muscle contraction. Start with the AP on a SE neuron. Do not forget synaptic transmission and the AP on the muscle cell. Please be as detailed as you can be. List what each protein does and how the myofilaments interact with each other. Why is this called the “sliding filament mechanism”?

Draw and label the graph of a muscle twitch? What is going on during the latent period? the contraction period? the relaxation period?

Draw a graph of wave summation? Incomplete tetanus? Complete tetanus?
Where does the muscle cell get the energy to contract? What happens when the cell begins to run out of energy? What is fatigue?

What is a spasm (cramp)? Why do think a fatigued muscle is more apt to become spastic than a fresh muscle? Explain how/why rigor mortis develops. Why does a body get “stiff” after death? Draw the graph of a muscle fiber in a “fresh” state? “fatigued” state? “rigor mortis”?

Discuss isometric and isotonic contractions. Within isotonic, differentiate between concentric and eccentric contractions.

What are the different types of skeletal muscle fibers? How do they differ in relation to speed, color, myoglobin content, ATP production? Which muscles would you expect to have a high proportion of each?

Muscle Gross Anatomy (lab only):

Identify the anatomical parts corresponding to the generic components of a lever system. Describe the arrangement of these parts in first, second, and third class lever systems.

List the ways in which muscles are named? Give examples.

Identify the muscles of the: head, chest, abdomen, shoulders, arms, hips, legs and torso.

What is an origin, an insertion, an action? What is a prime mover? a stabilizer? a synergist? an antagonist? Give examples of each.

Identify the anatomical parts corresponding to the generic components of a lever system. Describe the arrangement of these parts in first, second, and third class lever systems. Draw each. How do you differentiate between the 3 types of lever systems?

Joints (lecture and lab):

Name the 3 anatomical classifications of joints. What is this classification based on? Give an example of each.

Name the 3 physiological classifications of joints. What is this classification based on? Give an example of each.

List and describe the types of fibrous joints. Provide examples.

List and describe the types of cartilaginous joints. Provide examples.

List and describe the types of synovial joints. Provide examples.

Describe a typical synovial joint: Include the joint cavity, articular capsule, ligaments, bursae, tendon sheaths, menisci, etc.

Discuss the types of movements: include the angular, circular and special movements.

What does uniaxial, biaxial and multiaxial movements mean? List an example of each.

Name the joint components at the: shoulder, hip, knee, elbow. List the type of synovial joint for each. List the types of movements possible at each.

Name the six types of diarthroses/synovial joints and give an example of each. Describe them. What are the bone shapes found at each of these joints?
How are ligaments named? What is an extracapsular ligament? An intracapsular ligament? Give examples of each.

Draw and label diagrams of the hip, elbow, knee and shoulder. Make sure you include the synovial cavity, joint capsule, synovial membrane, synovial fluid, ligaments, bursae, tendon sheaths.

Draw and describe the following movements: abduction, adduction, elevation, depression, flexion, extension, hyperextension, opposition, rotation, circumduction, lateral flexion, supination, pronation, eversion, inversion, plantar flexion, dorsal flexion, medial rotation.

What is osteoporosis? Osteomalacia? Paget’s disease? Rickets?

UNIT 4

CNS anatomy (lecture and lab):

What is the “basic pattern” seen in the brain and spinal cord? What is the difference between white matter and gray matter? Compare spinal cord to lower brain to cortex?

Draw and label the cross-section of the spinal cord. Include horns, tracts, spinal nerves (with roots) and a somatic afferent fiber, association fiber, and a somatic efferent fiber.

Draw a cross-section of the spinal cord and label the ascending tracts and the descending tracts.

Discuss the gray matter of the spinal cord? Draw the “butterfly” (gray matter) and label the areas devoted to SA, SE, VA, VE.

How many fibers are involved in the different sensory tracts? What are they named? How many fibers are involved in the motor tracts? What are they named?

Describe the development of the CNS? List the parts of the telecephalon, diencephalon, mesencephalon, metencephalon, and myelencephalon.

What are the hollow spaces inside the brain and spinal cord? Draw and label the ventricles. What is CSF? How does it protect and aid brain function? Describe the origin and circulation of CSF. How much is produced per day?

Describe the protective coverings of the brain and spinal cord. How are the dura, arachnoid and pia different?

What are the major fissures and sulci of the cerebral cortex? What are the major gyri? Name the lobes of the Cerebral Cortex. What sulcus separates each?

Define decussation. Define somatotopy. Why are these important?

What is a sensory and/or motor homunculus (little man)?

What is the function of association areas? Why do you think that they are bigger than the sensory area they are associated with?
Discuss how the right cerebral cortex is different from the left cerebral cortex. What does it mean to be “right-brain dominant” vs “left brain dominant”?

What is the function of the prefrontal cortex? What would happen to a person if damage were to occur to this area? This area is the last to mature—discuss how this may affect a teenager’s behavior vs an older adult.

What is a stroke (a CVA)? How does it affect the brain and brain function?

Where are most people’s speech centers located? Discuss the differences in symptoms with damage to Broca’s and damage to Wernicke’s.

If you were to ask a “right-brain dominant” person and a “left-brain dominant” person for directions, how might their answers differ?

What are the 3 types of white matter in the cerebrum? What do they each connect? Describe what a person would be like if the corpus callosum were severed.

What are the functions of the Thalamus? Why can it be described as a “gate-keeper” to the cortex? What percent of sensory material is edited out and not passed to the cortex? What happens if you prevent its editing function?

What are the functions of the hypothalamus? Why is it sometimes called the “link” between the nervous and endocrine systems? What 2 hormones are produced by the hypothalamus? What are releasing and inhibiting factors used for? Discuss the nuclei found here: hunger, satiety, rage, pleasure, etc.

What area mediates visual reflexes? Auditory reflexes? What are the cerebral peduncles?

What vital centers are found in the pons? In the medulla?

There are 12 pairs of cranial nerves. List the name, origin, route through the skull, organ innervated, function and whether they are sensory/motor/both of each. Which cranial nerves carry autonomic nervous system fibers?

Discuss the cerebellum. Name the lobes. What are folia? Arbor vitae? Vermis? What are the primary functions of the cerebellum?

What is flaccid paralysis? Spastic paralysis? Hemiparalysis, Paraparalysis, Quadraparalysis? Describe how each occurs and what the symptoms of the patient might be.

Discuss reflexes? What is the difference between spinal and cranial? Innate and acquired? Somatic and visceral?

List the components of a typical reflex. How many neurons are involved?

Autonomic nervous system (lecture only):

Using the anatomical names of the ANS (i.e. craniosacral and thoracolumbar) compare and contrast the anatomical arrangements of the sympathetic and parasympathetic nervous systems. List the ganglia associated with each.

Using the physiological names of the ANS (i.e. Fight or Flight and Rest and Digest) describe the functions of the sympathetic and parasympathetic nervous systems.

Compare the sympathetic and parasympathetic as to: length of preganglionic and postganglionic fibers, neurotransmitters released, types of receptors.

Describe the effects of the sympathetic and parasympathetic nervous systems on the: heart, pupil of the eye, ciliary muscle of the eye, salivary glands, bronchioles in the lungs, digestive system.