MATH 1332 – Contemporary Mathematics I INET 2017-2018 Syllabus *
(Fall 2017 – Summer II 2018)
* This Generic Syllabus will be supplemented by your instructor’s Syllabus Addendum. Together, these documents serve as the Course Syllabus.
THIS COURSE CAN BE COMPLETED ENTIRELY ONLINE; NO CAMPUS VISITS ARE REQUIRED.

COURSE DESCRIPTION
Topics may include introductory treatments of sets, logic, number systems, number theory, relations, functions, probability and statistics. Appropriate applications are included.

COURSE PREREQUISITES
This is an entry-level course and is open to any student meeting TSI standards of college readiness (student must have appropriate assessment test score or have successfully completed DMAT 0310).

REQUIRED / RECOMMENDED MATERIALS
ALEKS 360 Access Code. The web address for ALEKS is www.aleks.com. This code will provide access to the ALEKS website where all of the work will be done for the course. The ALEKS website includes an electronic copy of the text, video instruction, and many other helpful features.
✓ Students must have an active e-mail account and regular access to a computer with a reliable internet connection to submit work through ALEKS.
* GRAPHING calculators is required. You will have free access to a graphing calculator in ALEKS on selected questions.

ISBN / TEXTBOOK
Optional Textbook ISBN: 9780073519678
Required Aleks 360 access code. ISBN: 9781259384268
* The textbook is NOT required. An eText is included in ALEKS.

CERTIFICATION POLICY
Students must attend and participate in their on-campus or online course(s) in order to receive federal financial aid. Instructors are required by law to validate attendance in order for students to receive financial aid. In an online class, simply logging in is not sufficient by itself to demonstrate academic attendance. Students must demonstrate they are participating in their online class and are engaged in an academically related activity. To be certified as attending online mathematics courses, students must do one of the following prior to the certification Date: a) complete the Initial Knowledge Check in ALEKS; or b) complete a Progress Assessment upon transferring previous work. Students should contact the instructor with any questions regarding what constitutes the Initial Knowledge Check.

COURSE OUTLINE
The course consists of 386 topics:
Problem Solving (31 topics)
Sets and Logic (26 topics)
The Real Number System (86 topics)
Topics in Algebra (148 topics)
Consumer Math (31 topics)
Probability and Counting Techniques (21 topics)
Statistics (11 topics)
EVALUATION PROCEDURES
Assessment of your performance will be based upon mastery of topics in ALEKS, a final cumulative exam, and weekly time spent working in ALEKS. Please see your instructor’s Syllabus Addendum for due dates and further grading information.

<table>
<thead>
<tr>
<th>Weekly Time Spent Working in ALEKS</th>
<th>10%</th>
</tr>
</thead>
<tbody>
<tr>
<td>Please see your instructor’s Syllabus Addendum for time requirements</td>
<td></td>
</tr>
<tr>
<td>Pie Mastery -- #Topics Mastered/386</td>
<td>70%</td>
</tr>
<tr>
<td>Cumulative Final Exam</td>
<td></td>
</tr>
<tr>
<td>The Final Exam is cumulative and covers material from the following Contemporary Mathematics objectives: Problem Solving, Sets and Logic, The Real Number System, Topics in Algebra, Consumer Math, Probability and Counting Techniques, and Statistics. Failure to master all material in those objectives may result in poor performance on the Final Exam. Please see your Instructor’s Syllabus Addendum for specific topics covered on the Final Exam.</td>
<td></td>
</tr>
<tr>
<td>20%</td>
<td></td>
</tr>
</tbody>
</table>

The instructor reserves the right to require proctored testing at any point during the course.

GRADING SCALE
Grades for the course will be assigned using the following scale:

<table>
<thead>
<tr>
<th>Grade</th>
<th>Percentage</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>90 – 100%</td>
</tr>
<tr>
<td>B</td>
<td>80 – 89%</td>
</tr>
<tr>
<td>C</td>
<td>70 – 79%</td>
</tr>
<tr>
<td>D</td>
<td>60 – 69%</td>
</tr>
<tr>
<td>F</td>
<td>0 – 59%</td>
</tr>
</tbody>
</table>

Students who have yet to complete the course and fail to participate after the drop date will receive an F in the course.

TEMPORARY ACCESS TO ALEKS
ALEKS provides a Financial Aid Access Code. This code gives students temporary access to ALEKS for a two-week period. Once the code expires, students will be locked out of their ALEKS account until a regular Student Access Code is purchased. It is highly recommended that students purchase the regular Student Access Code BEFORE the two weeks expire to prevent interruptions in their ALEKS account. ALEKS Corporation developed the Financial Aid Access Code to help students receiving financial aid. The availability of this service will depend on its ethical use by instructors and students, and may be discontinued at the discretion of ALEKS at any time. Students completing the entire course using the Financial Aid Access Code will receive a grade of F regardless of course performance. A regular ALEKS Student Access Code must be purchased in order for students to receive a grade based on course performance.

TECHNICAL SUPPORT
It is the responsibility of the student to contact ALEKS Technical Support to resolve any technical issues. Visit http://www.aleks.com/support for assistance.

CVC STUDENT LEARNING OUTCOMES
1. Apply set theory and represent set operations with Venn Diagrams. (THECB #1)
2. Determine the validity of an argument. (THECB #2)
3. Use linear equations and their graphs to solve problems. (THECB #6)
4. Solve basic problems with percents and simple interest. (THECB #3&6)

TEXAS HIGHER EDUCATION COORDINATING BOARD (THECB) LEARNING OUTCOMES
Upon successful completion of this course, students will:
1. Apply the language and notation of sets.
2. Determine the validity of an argument or statement and provide mathematical evidence.
5. Use fundamental probability/counting techniques to solve problems. (THECB #4&6)
6. Interpret and analyze various representations of data. (THECB #5)

4. Demonstrate fundamental probability/counting techniques and apply those techniques to solve problems.
5. Interpret and analyze various representations of data.
6. Demonstrate the ability to choose and analyze mathematical models to solve problems from real-world settings, including, but not limited to, personal finance, health literacy, and civic engagement.

TEXAS CORE OBJECTIVES FOR STUDENT LEARNING
The College defines essential knowledge and skills that students need to develop during their college experience. These general education competencies parallel the Texas Core Objectives for Student Learning. In this course, the following skills are in focus.

1. **Critical Thinking Skills** - to include creative thinking, innovation, inquiry, and analysis, evaluation and synthesis of information.
2. **Communication Skills** - to include effective development, interpretation and expression of ideas through written, oral and visual communication.
3. **Empirical and Quantitative Skills** - to include the manipulation and analysis of numerical data or observable facts resulting in informed conclusions.

MATH 1332 develops Critical Thinking, Communication, and Empirical and Quantitative Skills by requiring students to solve and analyze applications to at least one of the following: sets, logic, number systems, number theory, functions, probability and statistics.

INSTITUTIONAL POLICIES
Institutional policies relating to this course can be accessed from the following link:
www.cedarvalleycollege.edu/syllabipolicies